106

AMI-C 微逆集中管理单元

安装使用说明书 V1.1

安科瑞电气股份有限公司

申 明

在使用本产品前请仔细阅读本说明,其中涉及的图片、标识、符号等均为 安科瑞电气股份有限公司所有。非本公司内部人员未经书面授权不得公开转载 全部或者部分内容。

本说明内容将不断更新、修正,但难免存在与实物稍有不符或错误的情况。 用户请以所购产品实物为准,并可通过 www. ACREL.cn 或销售渠道下载索取最 新版本的说明书。

目 录

1	概述	4
2	产品功能及特点	4
3	型号说明	4
4	技术参数	4
5	外形及安装	5
6	接线方式	6
7	按键及显示操作指南	6
7	.1菜单操作及按键功能	6
7	.2菜单说明	7
8	功率输出控制说明	9
9	D0 控制说明	9
10	网页操作说明	9
11	跨越局域网访问设备设备本地服务器操作说明	10
12	通讯寄存器表	11
13	故障排除	13

1 概述

AMI-C 微逆集中管理单元是针对用于屋顶太阳能、小型光伏电站系统中使用本公司的微型逆变器,进行集中能量控制与管理。使用电力线载波通信收集每台微型逆变器的数据,存储于设备内部,提供网络接口、RS485 接口,用户可使用组态系统连接,或通过浏览器直接查看设备监控的每台微型逆变的状况。

2 产品功能及特点

去耦模块设计可提高整个系统的可靠性,防止电网侧负载对系统的影响,在系统大批量使用微型逆 变器时,可防止各发电支路相互影响。

每台集中管理单元相当于一台本地服务器,用户可以通过网络(Internet)直接访问到这台设备,查询每台微型逆变器的实时状态及历史数据;提供 RS485 接口,用户可连接到后台控制系统,组成一个小型电站管理系统来自动控制用户的用电和发电是否匹配,防止发电倒灌入电网(电力公司是否允许)。

中文液晶显示,方便参数设定、数据查询、检修。

支持 ModBus RTU 通讯协议,通讯地址、波特率可自由设定。

支持 ModBus TCP 通讯协议,网络 IP、掩码、网关、端口可自由设定。

每台集中管理单元必须配套安装一台去耦模块,最多可以管理 20 台微型逆变器,发电电流通过去耦模块并入电网,去耦模块允许承受 20A 电流,允许瞬时 2 倍过载。

3 型号说明

4 技术参数

	电力网	AMI-C 专用				
通信接口	以太网	10/100M(Modbus TCP 协议、本地服务器)				
	RS485	ModBus-RTU 协议,1200/2400/4800/9600/19200/38400bps				
	交流供电	220VAC, 允许±20%				
电源要求	频率					
	功耗	小于 12VA				
	显示	LCD				
工社 台 站	开关量输入	4 路无源干接点输入方式				
功能	工头目校山	1 路继电器常开触点输出				
	一 开大里砌山	触点容量: 5A/30VDC 5A/250VAC				
尺寸	集中管理单元	210*94*34.5				

(长*宽*高)	去耦模块	89*90*62 (mm)
	温度/湿度	工作温度∶−20 [~] +65℃,湿度 95%,无凝露、无腐蚀性气体场所
	冷却	自然
	外壳防护等级	IP30
通用技术参数	海拔	≪2500m
	绝缘电阻	≥100M Ω
	工频耐压	电源//RS485 接口//网络接口//DI//D0 AC 2kV/1min

5 外形及安装

集中管理单元安装尺寸示意图

耦模块安装尺寸示意图

6 接线方式

From PVPlant

注: 去耦模块的端子必须拧紧,未拧紧端子大电流时端子会过热导致设备烧毁。 集中管理单元的电源供给必需从去耦模块的小端子引入。

7 按键及显示操作指南

7.1 菜单操作及按键功能

按键	状态	功能说明		
SET _{菜单键}	单击	退出菜单或取消修改操作		
	单击	上翻菜单,设定状态下减小设定的数据		
左键	长按	设定状态下修改数据时快速减小数据		
	单击	下翻菜单,设定状态下增大设定的数据		
右键	长按	设定状态下修改数据时快速增大数据		
确认键	单击	进入菜单,设定状态下确认修改的参数		
全 + 4 组合 键	同时按	设定状态下修改数据时按每次百位减 1 快速 修改数据		
▶ ₊ ← ¹ _{组合键}	同时按	设定状态下修改数据时按每次百位增 1 快速 修改数据		

7.2 菜单说明

显示在"主界面",使用 ◀或 ▶ 键可以翻页查看总功率、总电能及各支流功率界面。

注:

1. 在针对某条具体参数的设定或修改后,按 键,装置会对本条目数据进行保存并使该设置立即 生效;需要取消当前的操作,请按SET键。

2. "采集管理"中设置的每个微逆的 SN 如果为 "00000000000" 表示该设备位设备部不存在。

3. "系统管理"中"清除电能",选"是"按◀┛键将清除系统记录的今日发电量、总发电量、昨日发电量。

4. "系统管理"中"清除记录",选"是"按◀┛键将清除系统记录的每天、每月、每年的发电记录。

5. "系统管理"中"背光控制",选"自动"时,一分钟没有按键操作后,背光熄灭。

8 功率输出控制说明

"功率输出控制"分总线控制和 DI 控制,总线控制时,可通过 MODBUS RTU 或 MODBUS TCP 设置限功率。

DI 控制时, DI1 闭合时, 功率为 0%; DI2 闭合时, 功率输出降低至 25%; DI3 闭合时, 功率输出降低至 50%; DI4 闭合时, 功率输出降低至 75%, 否则 100%输出(DI1 优先级最高,详细情形如下表所示),此时如果通过总线访问,返回异常数据。

DI0	DI1	DI2	DI3	功率输出
1	×	×	Х	0%
0	1	X	Х	25%
0	0	1	×	50%
0	0	0	1	75%
0	0	0	0	100%

注: 功率输出 0%, 实际输出不完全为 0, 如果需要完全为 0, 可通过外加 DO 控制断开整个发电支路。

9 DO 控制说明

DO 控制时间为0时,为电平控制,不为0时,脉冲控制,闭合T时间后断开。

DO 输出控制分总线控制和 DI1 控制,总线控制时,通过 MODBUS RTU 或 MODBUS TCP 设置 DO 状态; DI1 控制时,通讯控制返回异常,DI1 闭合(液晶界面的 DI1 状态显示为实心,如果输出控制设置 为 DI1 控制,此时功率输出为 0%),继电器闭合,DI1 断开 T (T!=0)时间后,继电器断开。

T 控制	T=0	T!=0
总线控制	电平方式	脉冲方式,闭合 T 时间后断开
DI1 控制	DI1 断开, DO 断开; DI1 闭合, DO 闭合	DI1 闭合, DO 闭合; DI1 断开 T 时间后, DO 断开

10 网页操作说明

设备本地服务器提供实时发电功率查询、发电历史曲线(可记录 20 年)、微型逆变器设备号管理、 网络设置。 主页界面可以查看各光伏的发电情况,有电池板图像,但没有数据,说明当前设置的对应设备没有 连接上;如果出现蓝天白云的图案,说明当前位置没有设置设备。

历史查询界面可以查看历史数据,如果时间跨天调整,下拉框中的时间与你查询的时间将会不一致, 查询的将是修改之前保存的数据。

系统设置界面,可以方便用户查询当前的系统参数,修改以太网设置、MODBUS设置和时间设置。 采集管理界面可以方便用户查询修改需要连接的设备号。

下图例举了系统设置界面:

	- @				
	'el 🖱	当前总功率	今日发电量	累计发电量	
	CI	0000 W	0000 Wh	0000 Wh	
主页	历史查询	系统设置	采集管理	关于我们	
以太	:两设置				
	IP地址:	192.168.12.160)		
	子网掩码:	255.255.255.0			
	网关地址:	192.168.12.1			
	Modbus TCP端口:	502			
温碧 同一	聲提示: 如果您更新了设: →网段内。	备IP地址与子网掩码,	请确保两者与您的设	备在	
	IP地址:	192 168 3 2	5		
	子网掩码:	255 255 255 0			
	网关地址:	192 168 3 1			
	Modbus TCP端口:		_		
			f	禄 存	
MA	C地址设置				
	MAC地址:	00-35-71-40-	00-12		

注意:如果修改时间,推荐晚上修改,以免出现一段时间内无记录(时间后移)或记录被覆盖(数据前移),跨天修改时,因为内部有大量数据要处理,在修改后的3-5秒对仪表操作将没有反应,属于正常现象。

11 跨越局域网访问设备设备本地服务器操作说明

首先测试在局域网内是否可以正常访问设备,在此前提下通过做端口映射才可以正常在外网进行对设 备的访问。

端口映射通过路由器来做,一般交换机都不支持端口映射功能。不同的路由器做端口映射的地方不同, 请请路由器咨询厂家或查看说明书,端口映射做好之后,打开路由器的首页或者运行状态一项查看整个 网络对外的 IP 地址,用获取的公网 IP 在外网进行访问,正常情况下可以访问到设备。例如,映射端口为 5081,外网的 ip 地址获取到是 122.123.124.125,访问的时候 IE 浏览器填入 http://122.123.124.125:5081 即 可。

12 通讯寄存器表

使用 Modbus 功能码 03 (03H)、04 (04H) 可访问地址表中的所有内容,使用功能码 06 (06H) 可写单个寄存器数据,使用功能码 16 (10H) 可写连续寄存器数据,表格中的数据地址为十进制格式,每1个内部寄存器地址中存储的数据长度都为 16bit,即1个 WORD 数据。

数据	数据	W. LD 24 TH		
地址	内容	数据类型	备汪	读/与
0	仪表识别码	unsigned int	1	R
1	设备1功率	unsigned int	当前功率 (单位:W),例该值为 200 表示当前电 池板发电功率为 200W	R
2	设备2功率	unsigned int	同上	R
3	设备3功率	unsigned int	同上	R
4	设备4功率	unsigned int	同上	R
5	设备5功率	unsigned int	同上	R
6	设备6功率	unsigned int	同上	R
7	设备7功率	unsigned int	同上	R
8	设备 8 功率	unsigned int	同上	R
9	设备9功率	unsigned int	同上	R
10	设备 10 功率	unsigned int	同上	R
11	设备 11 功率	unsigned int	同上	R
12	设备 12 功率	unsigned int	同上	R
13	设备 13 功率	unsigned int	同上	R
14	设备 14 功率	unsigned int	同上	R
15	设备 15 功率	unsigned int	同上	R
16	设备 16 功率	unsigned int	同上	R
17	设备 17 功率	unsigned int	同上	R
18	设备 18 功率	unsigned int	同上	R
19	设备 19 功率	unsigned int	同上	R
20	设备 20 功率	unsigned int	同上	R
21	当前总功率	unsigned int	当前功率 (单位:w)	R
22	保留	unsigned int		R
23	今日发电量	Unsigned int	单位 (Wh)	R
24	保留	unsigned int		R
25 26	累计发电量	Unisgend long	25H:累计发电量的低字节; 26H:累计发电量的高字节	R/W
27	昨日发电量	Unsigned int	单位(Wh)	R
28	保留	unsigned int		R
29	连接的设备数	Unsigned int	表示当前通讯正常的设备数(不超过20)	R
30	功率满幅度输出	Unsigned int	0-100	R/W
31	DI、D0 控制状态	unsigned int	bit0表示 DO 的状态,Bit8-bit11表示 DI1-DI4 的状态	R
32 33	IP 地址	Unsigned char*4	例: 192.168.3.8。 地址 32: COA8H; 地址 33: 0308H	R/W
34 35	·子网掩码	Unsigned char*4	例: 255.255.255.0。 地址 34: FFFFH; 地址 35: FF00H	R/W
36 37	网关地址	Unsigned char*4	例: 192.168.3.1。 地址 36: COA8H; 地址 37: 0301H	R/W
38	MODBUS TCP	Unsigned int	默认 502	R/W
39			每个设备对应着唯一一个 MAC 地址	
40	MAC the the	Ungine del al ante	例: 11-22-32-01-01-22	п
41	MAC JULIE	unsigned char*b	地址 39: 1122H; 地址 40: 3201H; 地址 41:	К
			0122Н	
	地址编号(高8位)	unsigned char	1-247之间	R/W
42	通信波特率(低8位)	unsigned char	0=1200, 1=2400, 2=4800, 3=9600, 4=19200, 5=38 400,	R/W

43 44 45	当前时间	Unsigned char*6	例:时间为 13- 7-11 12:13:14 地址 43: 1307H; 地址 44: 1112H; 地址 45: 1314H	R/W
46 47	连接状态	Unsigned int	46H:bit0-bit15 表示设备 1-16 的连接状态, 47H:bit0-bit3 表示设备 17-20 的连接状态(0: 为连接, 1: 连接)	R/W
48 49 50	设备1表号	Unsigned char*6	000000000001-999999999999 00000000000 表示该设备不存在,设备号中不 包含 A-F。例: 112232010232 地址 48: 1122H; 地址 49: 3201H; 地址 50: 0232H	R/W
51 52 53	设备2表号	Unsigned char*6	同上	R/W
54 55 56	设备3表号	Unsigned char*6	同上	R/W
57 58 59	设备4表号	Unsigned char*6	同上	R/W
60 61 62	设备5表号	Unsigned char*6	同上	R/W
63 64 65	设备6表号	Unsigned char*6	同上	R/W
66 67 68	设备7表号	Unsigned char*6	同上	R/W
69 70 71	设备8表号	Unsigned char*6	同上	R/W
72 73 74	设备9表号	Unsigned char*6	同上	R/W
75 76 77	设备 10 表号	Unsigned char*6	同上	R/W
78 79 80	设备 11 表号	Unsigned char*6	同上	R/W
81 82 83	设备 12 表号	Unsigned char*6	同上	R/W
84 85 86	设备 13 表号	Unsigned char*6	同上	R/W
87 88 89	设备 14 表号	Unsigned char*6	同上	R/W
90 91 92	设备 15 表号	Unsigned char*6	同上	R/W
93 94 95	设备 16 表号	Unsigned char*6	同上	R/W
96 97 98	设备 17 表号	Unsigned char*6	同上	R/W
99	设备 18 表号	Unsigned char*6	同上	R/W

100				
101				
102			同上	
103	设备 19 表号	Unsigned char*6		R/W
104				
105			同上	
106	设备 20 表号	Unsigned char*6		R/W
107				
108	清所有记录数据(图形)	Unsigned int	写 A5 清除,清除后不能再查询到历史记录,不能恢复	R/W

例1:读取设备1的当前功率。

发送: 0x01, <u>0x03</u>, 0x00, 0x01, 0x00, 0x01, 0xd5, 0xca

返回: 0x01, <u>0x03</u>, 0x02, 0x00, 0xc8, 0xb9, 0xd2

说明:读到的设备1的当前功率为200W。

例 2: 设置仪表 IP 地址 192.168.3.18

发送: 0x01, <u>0x10</u>, 0x00, 0x20, 0x02, 0xc0, 0xa8, 0x03, 0x08, 0x45, 0xae

返回: 0x01, 0x10, 0x00, 0x20, 0x02, 0x85, 0x01

例 3: 设置 DO 状态闭合

发送: 0x01,0x05,0x00,0x00,0xff,0x00,0x8c.0x3a

返回: 0x01,0x05,0x00,0x00,0xff,0x00,0x8c.0x3a

例 4: 读取 DO 状态

发送: 0x01,0x01,0x00,0x00,0x00,0x08,0x3d,0xcc

返回: 0x01,0x01,0x01,0x01,0x90,0x48

例 5: 读取 DI 状态

发送: 0x01,0x02,0x00,0x00,0x00,0x08,0x79,0xcc

返回: 0x01,0x02,0x01,0x00,0xa1,0x88

13 故障排除

显示的连接数与实际连接的设备数不同:

- 1. 检查线路连接是否正确,电网接与去耦模块的L、N端相连,微逆集中管理单元与去耦模块的PL1、 PL2端相连,微逆与去耦模块PL2、PN2端相连;
- 2. 确认接线无误后,查看采集管理中的设备号是否设置正确,查看方式分为4种:液晶查看,WEB 网页查看,通过 MODBUS TCP 或 MODBUS RTU 协议读取设备号,对比读出的设备号与微逆中 的设备号是否一致。(液晶显示设备当前功率详解:液晶对应序列号后的设备号显示"无"时,表明管理单元中对应位置的设备号设置为0;显示"--"时,表明设置的表号不为0,但是与管理 单元之间不能正常通讯。)

网页打不开或 Modbus TCP 连不上:

- 1. 检查网线是否插好;
- 2. 查看以太网网址是否与本地网络处在同一网段, Modbus TCP 端口是否正确, 修改 IP 地址后, 需 开机重启微逆集中管理单元设备。

更改记录:

V1.1: 删除概述中"特有的去耦模块设计"的"特有"。